16,516 research outputs found

    Influence of tensor interactions on masses and decay widths of dibaryons

    Full text link
    The influence of gluon and Goldstone boson induced tensor interactions on the dibaryon masses and D-wave decay widths has been studied in the quark delocalization, color screening model. The effective S-D wave transition interactions induced by gluon and Goldstone boson exchanges decrease rapidly with increasing strangeness of the channel. The tensor contribution of K and η\eta mesons is negligible in this model. There is no six-quark state in the light flavor world studied so far that can become bound by means of these tensor interactions besides the deuteron. The partial D-wave decay widths of the IJp=1/22+IJ^p={1/2}2^+ NΩ\Omega state to spin 0 and 1 ΛΞ\Lambda\Xi final states are 12.0 keV and 21.9 keV respectively. This is a very narrow dibaryon resonance that might be detectable in relativistic heavy ion reactions by existing RHIC detectors through the reconstruction of the vertex mass of the decay product ΛΞ\Lambda\Xi and by the COMPAS detector at CERN or at JHF in Japan and the FAIR project in Germany in the future.Comment: 19 pages, 5 figure

    The NN phase shifts in the extended quark-delocalization, color-screening model

    Get PDF
    An alternative method is applied to the study of nucleon-nucleon(NN) scattering phase shifts in the framework of extended quark delocalization, color-screening model(QDCSM), where the one-pion-exchange(OPE) with short-range cutoff is included.Comment: 5 pages, 3 figures, two-colum

    Tagging the p n -> d phi reaction by backward protons in p d -> d phi p_{sp} processes

    Full text link
    The reaction p d -> d phi p_{sp} is studied within the Bethe-Salpeter formalism. Under special kinematical conditions (slow backward spectator proton p_{sp} and fast forward deuteron) relevant for forthcoming experiments at COSY, the cross section and a set of polarization observables factorize in the contribution of the pure subprocess p n -> d phi and a contribution stemming from deuteron quantities and kinematical factors. This provides a theoretical basis for studying threshold-near processes at quasi-free neutrons

    Electrolysis-based diaphragm actuators

    Get PDF
    This work presents a new electrolysis-based microelectromechanical systems (MEMS) diaphragm actuator. Electrolysis is a technique for converting electrical energy to pneumatic energy. Theoretically electrolysis can achieve a strain of 136 000% and is capable of generating a pressure above 200 MPa. Electrolysis actuators require modest electrical power and produce minimal heat. Due to the large volume expansion obtained via electrolysis, small actuators can create a large force. Up to 100 ”m of movement was achieved by a 3 mm diaphragm. The actuator operates at room temperature and has a latching and reversing capability

    Integrated parylene-cabled silicon probes for neural prosthetics

    Get PDF
    Recent advances in the field of neural prosthetics have demonstrated the thought control of a computer cursor. This capability relies primarily on electrode array surgically implanted into the brain as an acquisition source of neural activity. Various technologies have been developed for signal extraction; however most suffer from either fragile electrode shanks and bulky cables or inefficient use of surgical site areas. Here we present a design and initial testing results from high electrode density, silicon based arrays system with an integrated parylene cable. The greatly reduced flexible rigidity of the parylene cable is believed to relief possible mechanical damages due to relative motion between a brain and its skull
    • 

    corecore